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THE ROAD-COLOURING PROBLEM* 

BY 

G. L. O 'BRIEN 

ABSTRACT 

Let G be a finite directed graph which is irreducible and aperiodic. Assume 
each vertex of (3 leads to at least two other vertices, and assume (7 has a cycle 
of prime length which is a proper subset of (3. Then there exist two functions 
r :G-- -*G and b : G - - - , G  such that if r ( x ) =  y and b ( x ) =  z then x--- ,y and 
x - - * z  in G and y ~ z  and such that some composition of r ' s  and b 's  is a 
constant function. 

1. I n t r o d u c t i o n  

Let  G be  a directed graph  with finite vertex set S. Assume  th roughou t  that  G 

is irreducible, that  is, for  all p roper  subsets U of S, there  are vertices x ~ U and 

y E S - U such that the edge x ---, y is in the graph (3;. (We use the nota t ion 

"x  ---, y in G "  since at times o ther  graphs  with vertex set $ will be considered.)  

Assume  also that G is aperiodic, that  is, S cannot  be par t i t ioned into n > 1 

subsets S~, Sz,. • ", S, = So in such a way that x --* y in G and x E S~ together  

imply y E S,_~, i = 1, 2, • • . ,  n. 

We say G is A-furcating for  an integer A --> 2 if every x ~ S leads to  at least A 

distinct e lements  of S and G is strictly A-furcating if every x leads to  exactly A 

elements.  Suppose  G is A-furcating. A A-colour ing  ~3 for G is a set ~ = 

{rl, r2, " ", r,} of functions f rom S into S such that x ---, r , (x)  in G, i = 1,2, • •., A, 

and r~(x), r 2 ( x ) , . . . ,  r, ( x )  are distinct for  all x E S. For  a given A-colouring ~, let 

~: = ,~ (~ )  = ff(ri ,  r2,. •., r~) deno te  the semi-group of functions h : S ~ S which 

can be writ ten as a composi t ion  h = h ~ h 2 . . . h k  where  each hi E ~. In the 

part icular  case A = 2, we write bifurcat ing for  2-furcating and colouring for  

2-colouring, and we call the funct ions of a colour ing r and b (red and blue.). 
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The road-colouring conjecture of Adler,  Goodwyn and Weiss [1] is that for 

every strictly A-furcating, irreducible, aperiodic graph G, there is a A-colouring 

~d for which ~(¢g) contains a constant function. This conjecture arose in the 

course of their work in ergodic theory. The  problem is also interesting from a 

purely graph-theoretic point of view. The principal result of this paper  is that the 

road-colouring conjecture is true under certain circumstances which are 

specified in Theorem 1. 

The  name "road-colouring" was coined by Adler, Goodwyn and Weiss 

because of the following interpretation. Think of the vertices of G as cities and 

the edges as one-way roads between cities. Is it possible to choose two roads 

leading f rom each city and paint one red and the other blue, in such a way that a 

finite list of instructions of the form "follow the red road"  or "follow the blue 

road"  will lead an individual to a particular city x (after he has followed all the 

instructions in order), no mat ter  what his starting point? 

A cycle (of length n)  in G is an ordered set (a 1, a2,-- ", a , )  of distinct elements  

of S such that 

(1) a,---~a,_l---~...-->al--->a, i nG .  

THEOREM 1. Let G be a finite directed graph which is irreducible, aperiodic 

vnd A -furcating, where A >= 2. Suppose G has a cycle C whose length is a prime 

number less than I S ~ the cardinality of S. Then G has a A -colouring ~ such that 

o~(~) contains a constant function. 

Section 2 contains some preliminaries needed for the proof of Theorem 1 and 

Section 3 contains the proof itself. Section 4 discusses the difficulties involved in 

extending Theorem 1 to the case when n is not prime. The rest of the present 

section contains some initial observations about Theorem 1. 

First, the road-colouring conjecture is easily seen to be true if G has a loop, 

that is, a vertex al such that al --~ al in (3. If this is the case, let RI  = {a~} and, for 

i = 2, 3 , . - . ,  let 

R, = {y ~ S - {al}: the shortest path f rom y to al has i - 1 edges}. 

(A path P in G is an ordered subset (So, sl,- • ", s~) of S such that s~ ~-~ s~ in G 

for i = 1, 2 , - -  -, m.) Since G is irreducible, S = (-J Ri. Now define r(al) = al and 

for i > 1 and z ~ R~, let r (z )  -- y where y is some element of R~_~ such that z --~ y 

in G. It is clear that such a y exists. Then the composition h -- rrr • • • r maps S 

into {a~} provided enough r ' s  are included. Assume henceforth that G has no 

loops. 

The  problem in the general case is that if we at tempt to lead occupants of all 
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vertices to some fixed vertex by some succession of r 's  and b's, the first ones to 

arrive must depart before the later ones reach the vertex. Nevertheless, the 

above procedure is a key part of the proof of Theorem 1. We will use it to map S 

into C and subsequently to manufacture a map from C to a single point. 

The assumption that G is irreducible is not essential. It is sufficient that G 

have a subgraph satisfying the hypotheses of Theorem 1 and that there exist a 

path from any vertex of G to some vertex of the subgraph, for then we may first 

map S to the vertex set of the subgraph, as in the case where G has a loop. If it is 

required that every constant function be in f f (~) ,  the irreducibility is necessary. 

It was shown by Adler et al. [1] that the assumption that G is aperiodic is 

necessary. 

The  conjecture as stated makes no sense without the A-furcation assumption. 

A natural variation is to drop this assumption but then to broaden the concept of 

A-colouring by permitting r, ( x ) =  rj (x )  for i ~ j. The theorem remains true with 

these modifications, even without the assumption that the length of C is less than 

I S I. The  proof of this is similar to the proof of Theorem 1. 

The  assumption that C has prime length is essential for our proof. Specifically, 

the conclusions of Lemmata  1 and 5 may be false without this assumption. The 

assumption that the length of C is less than I S 1 is used in the proof of Lemma 3. 

It is only needed if G is strictly bifurcating and if each vertex is lead to by exactly 

two other  vertices in G. If the road-colouring conjecture is true, these assump- 

tions about C are of course unnecessary for the conclusion of Theorem 1 to hold. 

The road-colouring conjecture would be false if it were modified to allow the 

colouring to be specified in advance. As an example, let S = {x, y, z} and let G 

be the graph with edges x ~ y, y ~ z, z ~ x, x ~ z, z ~ y and y --~ x. If the first 

three edges are coloured red and the last three blue, then r and b are both one- 

to-one, so that every h ~ ~(r ,  b) is a permutation of S. On the other hand, if the 

edges x ~ y ,  y ~ x  and z ~ y  are coloured red and the others blue, then 

rb(x)  = r (b ( x ) )  = r ( z )  = y and similarly rb(y)--- rb ( z )  = y, so that the road- 

colouring conjecture is true for this graph. 

2. Trees 

We will use the notion of tree in the proof of Theorem 1. The  reader is 

referred to Moon [2] or to most graph theory texts for background material. By a 

directed rooted tree T, we mean a tree in which the edges are all directed toward 

the root. We write x ~ y in T if y is one step below x (i.e., closer to the root) in 

T. The graph G and the cycle C = ( a~ ,a2 , . . . , an )  will be taken as fixed 

throughout. 
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DEFINITION. A C-tree T is a directed rooted tree which satisfies the following 

conditions: 

(i) the set of vertices of T is S, 

(ii) the root of T is a~, 

(iii) if x -*  y in T then x -* y in (3, and 

(iv) a,-*a,_~---~. . . -*al  in T. 

We use the following notation in connection with a C-tree T. First, let T U C 

denote  the directed graph whose edges are those of T together with al -*  a,. For 

each x E S, let RT(X) be the number  of edges in T from x down to al, plus one. 

R r ( x )  is called the height of x. Let S~(x) be the number in {1, 2 , - - . ,  n} such that 

S r ( x ) - R T ( x )  (mod n). Note that ST(a , )= R r ( a , ) =  i for i =  1,2, . . . , n .  For  

x E S ,  let B T ( x ) = { y  E S : y ~ x  and the path in T from y down to a~ goes 

through x} and l e t / J r ( x )  = BT(X)U {x}. 

If x E S and x -*  y in T, then R r ( y )  = RT(x) -- 1 and S t (y )  -- ST(x) - 1 (mod 

n). We say x E S is periodic in T if, for all y E S such that x - * y  in (3, 

S t (y )  --= S t (x )  - 1 (mod n). If x is not periodic, we say x is aperiodic. For x ~  a~, 

we say x is RT-constant if, for all y E S  such that x - * y  in (3, R r ( y )  = 

RT(x)--1;  otherwise we say x is RT-variable. 

To clarify the above concepts, it is helpful to plot some examples, such as the 

following. Let  G be the graph with vertex set S = {x, y, z, a~, a2, a3} and edges 

a~---~a3, aa-*a2, a2-*a~, a l -*y ,  az--*y, aa---~z, x---~a3, x - * y ,  y--ox, y - * z ,  
z -* x, and z -*  y. Let  C be the cycle (al, az, as). Let T~ be the C-tree with edges 

a 3 - *  a2, a2-* al, x - *  a3, y - *  x, z - *  x. Let Tz be the C-tree with edges a s - *  a2, 

a2-*al,  x -*as ,  y - * x ,  z - * y .  Observe that a3 is periodic in T~ but not in T2. 

Also, B T , ( y ) = O  while BT2(y)={z}. The proof of Theorem 1 is made more 

complicated by the possibility of two phenomena exhibited by the vertex x, 

namely B r ( x ) ~ f ~  for all C-trees and x - * a s  in all C-trees. 

3. Proof of Theorem 1 

We begin with an outline of the proof, which is presented in the form of 

several lemmata. Lemma 1 shows that it is enough to prove the theorem for the 

case when G is strictly bifurcating. This fact, which is then assumed for the rest 

of the section, greatly simplifies some of the subsequent steps. Now let T be any 

C-tree. Let  r(x) = y where x -*  y in T U C and let b(x)  = z where x -*  z in G 

but not in T U C. The composition of a sufficiently large number  of r's, say r k, 

maps S onto C. Note that any two vertices x and y such that S t (x )  = S t (y )  are 

mapped to the same element of C by r ~. Suppose there exists an h E ~(r ,  b) 
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such that S r ( h ( a , ) ) = S r ( h ( a j ) )  for two distinct ai, as ~ C .  Then rkh(ai) = 

rkh(aj). It follows that rkhr k maps S into a proper  subset of C. It is shown in 

Lemma 5 that this is sufficient to prove the theorem. The role of Lemmata  2 and 

3 is to construct a C-tree T for which a suitable h exists. The  construction is 

broken into cases, depending on whether there exists any aperiodic elements 

outside C and on whether there exists an aperiodic element x for which 

B r ( x )  = 0 .  The function h itself is constructed in Lemma 4. 

LEMMA 1. It is su]]icient to prove the theorem under the assumption that G is 

strictly bifurcating. 

PROOF. Let T be a C-tree. Since G is aperiodic, there must exist an 

aperiodic x ~ S. Let G '  be a strictly bifurcating graph with vertex set S and with 

edges chosen according to the following requirements. First suppose x ~ C. Let  

G '  contain all edges in T t.J C, all edges on a path leading via a non-repeating set 

of vertices from a~ to x and an edge x---*y where S T ( y ) # S r ( x ) - 1  (mod n). 

Next suppose x E C. At least one element of C and all periodic elements of C 

lead in G to elements of S - C. Thus we may let G '  contain all edges of T t3 C, 

and edge a~---~y where ai E C and S z ( y ) # i -  1, and an edge a,---~z where 

aj E C, aj # ai and z ~ C. In either case, such a G '  exists since at most two ( -< A) 

edges leading from any u E S are included in the requirements. 

Now let S" = {u E S: there is a path in G '  from al to u} and let G" be the 

graph with vertex set S" and with all edges of G '  which lead from (and hence to) 

vertices in S". G" is evidently strictly bifurcating, irreducible and aperiodic. Its 

vertices include al, a2, • • ", a,, x, y and, if appropriate, z. Thus G" has a cycle of 

prime length n < I S"I. 

The proof of Lemma 1 is now completed by observing that any colouring 

which provides a solution to the road-colouring conjecture for G" can be 

extended to a A-colouring which provides a solution for G. We assume 

henceforth that G is strictly bifurcating. 

The  proof of Theorem 1 depends on whether a C-tree T has an aperiodic 

vertex outside C or the only aperiodic vertices are in C. The next result shows 

that all C-trees are of the same type (for a given G and C). 

LEMMA 2. Suppose a C-tree T~ has the property that every vertex in S - C is 

periodic. Then every C-tree T has that property, Sr (x ) is independent o[ T [or all x, 

and the set {a~ E C: a~ is aperiodic} is independent of T. 

PROOF. The lemma is proved by induction on the number  of vertices x E S 

such that x ~ y in T and x ~ z in T~ where y # z. It holds when the number  is 0. 
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Let J be the set of C-trees for which the number is at most k - 1 and assume the 

statement of the lemma holds within the class J. Let T be a C-tree for which the 

indicated number  is k. Let x be one of the indicated vertices of S such tht R r ( x )  

is maximal, and assume x ---> y in T and x --* z in T1 where y ~ z. Let T2 denote  

the graph obtained from T by deleting the edge x ---> y from T and adding the 

edge x--->z. Since z ~ B r , ( x ) ,  it follows from the maximality of R r ( x )  that 

z ~ Br(x) .  Therefore  T2 is a C-tree in J. By the inductive hypothesis, every 

vertex in S - C is periodic in T2, Sty(s) = ST,(s) for all s E S and {a, E C: a, is 

aperiodic in Tz} = {at E C: at is aperiodic in T1}. Since x is periodic in T2, 

Sr2(y) = ST2(z). It follows that S t ( s ) =  ST~(s) = Sr,(s) for all s E S, that all 

s E S - C are periodic in T and that {a~ ~ C: a, is aperiodic in T} = {a~ E C: a~ 

is aperiodic in T,}. This completes the proof of Lemma 2. 

The purpose of the next lemma is to show that there exists a C-tree which has 

certain properties. Lemma 4 will then provide the required function h as 

discussed at the beginning of this section. Let  T be a C-tree and let x E S - C. 

We will be concerned with the following properties of T and x:  

(P1) x is aperiodic in T;  

(P2) every y E S - C is periodic in T and exactly one a, E C is aperiodic in T;  

(P3)  e v e r y  y E S - C is periodic in T and there exist a,, aj E C such that 

O) x---> aj in T, 

(ii) a,---*d in G where S T ( d ) ~ i - 1  (mod n), and 

(iii) if x --> v in G where v ~ aj, then every path in T LI C from v to a, goes 

through aj ; 

(P,) Br(x  ) = 0 ;  and 

(Ps) every y E B r ( x )  is periodic in T and there exist w, u, z E BT(X) such that 

(i) B r ( w )  = f~, and 

(ii) w - - * z  in T, w- -*u  in G and R r ( z ) < R T ( u ) .  

LEMMA 3. There exist a C-tree T and an x E S - C such that one of (P,), (P2) 

and (P3) holds and one of (P4) and (Ps) holds. 

PROOF. First suppose there exists a C-tree T~ and an aperiodic element 

x E S - C. Choose T~ and x from among all such C-trees and elements in such a 

way that IBT,(x)I is as small as possible. Then (P0 holds and it will be shown 

below that if (P4) does not also hold then a modification of T~ must also satisfy 

(Ps). Now suppose no such T~ and x exist. Then some a, E C is aperiodic. If only 

one element of C is aperiodic for a C-tree T then (P2) holds and, since n < IS ], 

there exists an x E S - C such that BT(x)  = ~ so that (P4) also holds in this case. 

Using Lemma 2, the only remaining case is that every" element of S -  C is 
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periodic while two distinct elements  a~ and ao are aperiodic for every C-tree. Let 
ak E C be such that ak ~ y in G for some y ~ S - C. Such an ak exists by the 

irreducibility of G and the fact that n < I S !. Let a, = a~ unless a ,  = ak and let 

ai = as otherwise. Choose a, E C  to be  the first vertex among 

ai, a,+~,.--, a,, a~ , - - - ,  a~-, for which there exists x E S -  C with x---, aj in G. 

Then choose a C- t ree  T~ and x E S - C such that x ~ aj in T~ and IBT~(x)I is 

minimized. It is easily seen that (P3) holds in this case. 

The proof  of L e m m a  3 is complete  if (P2) holds and, in the other two cases, it is 

complete  if B T , ( x ) = ~ .  Thus we need only prove the l emma under the 

assumption that IBTI(X)I > 0 .  If (P0 holds for 7"1, then y is periodic for all 

y ~ Br,(x) by the minimality condition on that set (otherwise, replace x by y). 

The  same fact holds by assumption if (P3) holds for T~. Let y E BT,(x) and let 

y --~ s in Tt and y ---> t in G where t #  s. Suppose t ~/~T,(x).  Then the graph 7"2 
obtained by deleting the edge y---* s f rom TI and adding the edge y ~ t is a 

C-tree.  (If t were in Bz,(y), this would not be the case.) By the procedure used in 

choosing a ,  (P3(iii)) remains valid for T2 in the case when (P3) holds. Since y is 

periodic in T~, it is clear that ST,(t) = S~(t) for all t E S. Consequently (P~) or (P3) 

remains valid for Tz, which contradicts the minimality of [Br,(x)I. We conclude 

that if y E Br,(x) and y ~ t in G, then t ~/3TI(X). 

Now suppose more  specifically that y --~ x in T~ and y ~ t in G where t # x. 

By the previous argument,  t E BT,(x), which implies Rrl(t)  > RT,(x) so that y is 

RT,-variable. It follows that there exists w E BT,(x) such that w is RT~-variable 

and RT,(w) is maximal. Suppose sa, s2, • •., st ~ w in T~. Then each s~ ~ t~ in G 

for some t~ # w. Since each s, must be  RT,-constant, 

(2) Rr,(t,) = Rr,(w), i = 1, 2 , . . . ,  I. 

Therefore  t~ ~ BT,(sj) for all i and j. The  graph T3 obtained by deleting f rom T1 

the edges s~ ~ w and adding the edges s~--~ t~ for i =  1 , 2 , . . . ,  t is clearly a 

C-tree.  By (2), RT~(S) = RT~(S) for all s E S so that (P1) and (P3) are unaffected by 

the change. 

It is clear that T3 satisfies (Ps(i)). Suppose w --* u~ in T3 and w ~ u2 in G where 

u~ J u2 and Rr~(u 0 # Rr~(u2). If Rr~(u2) > R73(Ul), take T = T3, z = 141 and 

u = u2. Otherwise, let T be the C- t ree  obtained by replacing the edge w --~ ut by 

w --~ u2 in T3 and let z = u2 and u = u~. Then (Ps) holds. This completes  the 

proof  of L e m m a  3. 

LEMMA 4. There is a colouring {r, b} and a function H E ~(r, b) such that the 

range of H is a proper subset of  C. 
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PROOF. The  proof is split into five cases. We will give the details in one of 

these and sketch the proof  in the other four. 

Assume there is a C-t ree  T with vertices x, w, z and u in S - C and a, and 

a, @ C such that (P3) and (Ps) both hold. Assume i _-< j. Some minor variations 

are required if i > j but, in any case, a " ro ta t ion"  of C can be made to ensure 

that i<=j. For s E S, let r(s)= t where s - -~ t  in T U C and let b(s )= t where 

s --* t in G but not in T U C. (Recall that G is assumed to be strictly bifurcating.) 

In particular, note that r (x )= a, b(a,)  = d, r (w)= z and b(w)  = u. Let H~ be 

the composit ion of enough r ' s  that H~(S)= C. If S t ( s )=  ST(t), it follows that 

H~(s)=H1(t).  Suppose there exists an h ~ ( r , b )  such that the set 

{Sr(h ( s ) ) : s  E C} does not contain n distinct values. It follows that t H~h (C)I = 

]HIhHI(S)I < n which proves the lemma. We therefore assume that no such h 

exists. Let P = (at = So, sl, • • -, sk = w) be a path of minimal length in G from 

some a~ E C to w. Let H 2 E  ~(r ,  b) be given by 1-12 =t i f f - , ' "  "f, where f~ = r if 

s , _ , - - - ~ s ~ T t A C  and f ~ = b  otherwise. Then H2(a~)=w. Let /--/'3 be the 

composit ion of RT(w) -- i r 's  so that H3(w) = a,. Let H = H~bH3H2H1. Since the 

range of H~ is C, it is clear by our assumptions that/-/2, H3 and b can only have 

the effect of permuting the ST-values when applied to C, H2(C) and H~-I2(C) 

respectively so that H ( C ) =  C. 
Now consider the modified colouring obtained by taking r(s) and b(s) 

unchanged for s / w  and taking r(w) = u and b(w)  = z. Define H as before but 

now assume H~ is the composition of enough r ' s  so that H~(S)= C for both 

colourings. Since w only appears  as the final vertex of P and since P has minimal 

length, it is clear that H2(C) is the same for both colourings. Recall that 

ST(u) = ST(Z) but R ~ ( u ) >  RT(Z). It follows that RT(u)>= RT(z )+  n. Let v E S 

be H3(w) under the second colouring. Then R T ( v ) > - i + n  > n  so that 

v E S -  C. Therefore  v is periodic and S~-(b(v))=-ST(v)- 1. But 

Sr(b(a,)) ~ ST(a,) - 1. Since w ~: r(S), the vertices of H3H2(C) are the same for 

both colourings except that a, is replaced by v. It follows that H~bH3HzH~(S) is a 

proper  subset of C for one of the two colourings. 

We now summarize the proof in various other cases. Suppose (P0 and (Ps) 

hold. Let /-/3 be the composition of RT(w)-RT- (x )  r's. Then the same H as 

defined above satisfies the required conditions. Next, suppose (P0 and (P~) hold. 

Let P be a path of minimal length f rom some az to x and let the second colouring 

be chosen so that r(x) and b(x)  are reversed. Then H2(a,)=x and H ( S ) - -  
H~H2H~(S) is a proper  subset of C for one of the two colourings. Third, suppose 

(P3) and (P4) hold. Let/-/3 be  the composition of Rr(x )  - i r's. The definition of aj 

ensures that H3(x) g C for the second colouring, under which r ( x ) ~  aj. Then 
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H ( S )  = H, bH3H~H,(S) is a proper  subset of C for one of the two colourings. 

Finally, the result is obvious if (P-0 holds. By Lemma  3, all possibilities have been 

included, so the proof of Lemma 4 is complete.  

Let {r, b} be the colouring constructed in Lemma  4 and let H E off(r, b) be such 

that H ( S )  is a proper  subset of C. The  final step in the proof of Theo rem 1 is to 

show that some K E 5Z(r, b) is a constant function. The next lemma shows such a 

K exists with K more particularly in off(r, H) .  Since r(C) C C and H ( C )  C C, it 

suffices to consider the restrictions of r and of H to C. 

LEMMA 5. Let H : C --~ C be a function which is not one-to-one. Let r( a~ ) = 

a~ 1, i = l , 2 . . . - , n  (where a , ,=a , , ) .  Then some K E ~ ( r , H )  is a constant 

function. 

PROOF. Choose K E ,~T(r, H )  such that 

I K(C)I  < n. Let a,, a,,a~ E K ( C )  and let 

j + 7 = k, say (calculated modulo n). Then 

IK(C)I is minimized. Then 1_- < 

a,, aj E K I(a~). Suppose i +/3 = 

Kr 2"+k ' ' ( a ~ ) =  K(a~-z° k+,+,)= K(a~)= a~ 

and, similarly, 

Kr 2"~ ' ' (a~)= a~. 

This contradicts the minimality of [K(C)I.  Thus all e lements  i + / 3  where 

a, ~K-'(a~) and a~ ~ K ( C )  are distinct, so that [ K - l ( a ~ ) [ _  < - n/[K(C)[.  Sum- 

ming over all a such that a~ ~ K(C) ,  we obtain 

n : I K - ' ( a o ) l  < n ,  

unless [K '(a~)l = n/[ K(C)[  for all a~ @[K(C)[. Thus I K(C)I  divides n. Since n 

is prime, IK(C) ]  = 1, i.e., K is a constant function. The proof of L e m m a  5 is 

complete.  

4. General izat ions  

It is not the case that every graph G of the type specified at the beginning of 

this paper  has a cycle of pr ime length, so Theorem 1 does not completely resolve 

the road-colouring problem. 

We do not know if the road-colouring conjecture is always true, but we can 

make  some observations about  the extension of our particluar construction to 

more  general graphs. Our  colouring has the proper ty  that a cycle C is chosen in 

advance and all edges of C are coloured red. Such colourings do not lead to a 
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positive answer to the road-colouring conjecture if any of the assumptions of 

Theorem 1 is dropped. 

First, suppose the length of C is IS I. Consider the simple example of a graph 

with 3 vertices, which is given in Section 2, and let C -- (x, y, z). Then the unique 

colouring which sets r ( z )  = y, r (y)  = x and r (x )  = z cannot be used to solve the 

road-colouring problem. Of course, in this example, the problem can be solved if 

we instead take C = (x, y). 

If the requirement that the length of C be prime is dropped from Theorem 1, 

then there are cases for which no colouring {r, b} which sets r(a~) = a,-i for all 

ai E C has the property that ft'(r, b) contains a constant function. For example, 

let S = {al, a2, a3, a4, x, y} and let the edges of G be ai --~ a~-i for all i, x ---> a2, 

x ~ a4, y -----> al, y ----> 03, al ---> x, a3 -----> x, a2---> y, and a4---> y. It is easily seen that G 

satisfies the requirements of Theorem 1 with the cycle C -- {al, a2, a3, a4} except 

that n = 4. For any C-tree T (there are only 4 possibilities), the colouring {r, b} 

obtained by setting r(s) = t where s ---> t in T U C has the property that for any 

H E ,~(r, b), H ( x )  # H(y) .  

It may still be the case that, for all G, Theorem I goes through for some cycle. 

In the above example, C ' =  (al, a2 ,x)  is a cycle of length 3 so Theorem 1 does 

solve the road-colouring problem for G. 

The main problem is that Lemma 5 is only true for cycles of prime length. In 

general, the best one can say is that there is a non-empty class , ~  of functions 

from C to C such that some composition of the function and r 's  gives a constant 

function. If n is prime, ffl contains all functions which are not one-to-one. We 

have obtained some information about the class ~ in [3], but have not 

characterized it in any useful way. An attempt to generalize Theorem 1 might 

involve a characterization of ~ for composite n, followed by a strengthening of 

Lemma 4 to produce a function H whose restriction to C is in ~F~. The above 

example shows that it would be necessary to choose C appropriately as well. 

Thus, generalization is likely to be quite difficult. 
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